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THE BURDEN OF PROOF  
AND THE PRESENTATION OF FORENSIC RESULTS 

Edward K. Cheng∗ 

INTRODUCTION 

To reach a conclusion of “match” or “non-match,” a forensic analyst 
necessarily applies some threshold or burden of proof.  To reach a con-
clusion of “guilty” or “not guilty” in a criminal trial, a jury uses the  
forensic conclusion along with other evidence, but also applies a bur-
den of proof — the familiar beyond a reasonable doubt standard.  
What is the relationship between these two burdens of proof?1  Should 
forensic “matches” be made according to the beyond a reasonable 
doubt standard?  If not, then what standard should forensic examiners 
use?2  Although seemingly technical at first, this question implicates 
some of the criminal justice system’s deepest values.  Applying the 
wrong forensic threshold could conceivably water down the reasonable 
doubt standard.  Worse yet, by manipulating the threshold, forensic 
examiners could effectively usurp some of the jury’s role in deciding 
guilt or innocence. 

The recent Organization of Scientific Area Committees (OSAC) 
Letter3 that is the subject of this Harvard Law Review Forum Com-
mentary Series represents a laudable first step in addressing these 
questions.  The Letter reaches two important conclusions: First, it 
states that the reasonable doubt standard does not preclude the use of 
different statistical procedures.4  Second, it argues that “report of a 
match without more information about the probability of a match . . . 
would not fulfill the expert’s role of impartially and adequately edu-
cating the trier of fact.”5  Both of these statements are facially correct, 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 * Professor of Law, Vanderbilt Law School.  Thanks to David Kaye, Paul Edelman, and  
Alicia Solow-Niederman for helpful conversations and comments, and to Rachel Johnston for  
research assistance. 
 1 See Memorandum from the Legal Res. Comm. to the Org. of Sci. Area Comms. for Forensic 
Sci., Nat’l Inst. of Standards & Tech., Question on Hypothesis Testing in ASTM 2926-13 and the 
Legal Principle that False Convictions Are Worse than False Acquittals (rev. ed. Oct. 7, 2016),  
reprinted in 130 HARV. L. REV. F. 137 (2017) [hereinafter Legal Resource Committee Memoran-
dum]. 
 2 Some researchers have argued that forensic examiners should avoid conclusions like 
“match” or “non-match” altogether.  See Geoffrey Stewart Morrison et al., Letter to the Editor, A 
Comment on the PCAST Report: Skip the “Match”/“Non-Match” Stage, 272 FORENSIC SCI. 
INT’L e7 (2017).  Those arguments, however, are beyond the scope of this Commentary, which 
assumes the current practice of reaching conclusions. 
 3 Legal Resource Committee Memorandum, supra note 1, at 2. 
 4 See id. 
 5 Id. at 7. 
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but ultimately the Letter fails to connect the dots completely.  Indeed, 
as this Commentary will show, the two conclusions are fundamentally 
linked: if the jury receives proper contextual information — specifical-
ly, the likelihood ratio associated with the “match” or “non-match” — 
then the burden of proof does not require a specific statistical  
procedure. 

The surprising answer to the original question about what is the 
“right” threshold is that there is actually no “right” threshold, nor do 
we need one.  As long as the jury receives the likelihood ratio, it does 
not matter what threshold the forensic examiner uses.6  The likelihood 
ratio, which measures the evidentiary worth or probative value of the 
forensic conclusion, incorporates the stringency or laxity of the thresh-
old used by the examiner.  Armed with that additional information, the 
jury can weigh the forensic conclusion along with everything else pres-
ented at trial using the proper burden of proof.  The key lesson is that 
this contextual information matters, and it matters a lot.  If forensic 
examiners present mere conclusions, then we do have to worry about 
the threshold.  Without additional contextual information, the jury 
must weigh the conclusion in some generic way, and the forensic exam-
iner’s threshold can hijack the proof process.  But given a measure of 
probative value like the likelihood ratio, the jury has enough infor-
mation to maintain firm control.  

The remainder of this Commentary develops these ideas with 
greater sophistication.  Part I explores the fundamental tradeoff be-
tween false positives and false negatives in decisionmaking, and ob-
serves that every statistical test represents a tradeoff between these 
two types of error.  Part II introduces likelihood ratios, and describes 
how they account for the false-positive–false-negative tradeoff in a fo-
rensic test, freeing the forensic examiner to use whatever threshold he 
likes.  Part III briefly concludes by noting some practical challenges to 
this solution to the threshold problem. 

THE ERROR TRADEOFF 

In law, we often talk about error as if it were monolithic, but there 
are in fact two separate kinds: false positives and false negatives.7  
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 6 Cf. D.H. Kaye, The Relevance of “Matching” DNA: Is the Window Half Open or Half Shut?, 
85 J. CRIM. L. & CRIMINOLOGY 676, 694–95 (1995) (making a somewhat analogous argument 
about likelihood ratios in debates about DNA profiling procedures). 
 7 There are actually four potential error rates: Let +  and −  denote positive and negative test 
results, and C  and C  denote the presence and absence of the condition of interest.  In this Com-
mentary, we focus on the false positive rate, )|( CP + , and the false negative rate, )|( CP − .  There 
are, however, two other error rates: the false discovery rate, )|( +CP , and the false omission rate, 
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156 HARVARD LAW REVIEW FORUM [Vol. 130:154 

Moreover, any diagnostic or decision test will necessarily trade these 
errors off against each other.  For example, suppose we want to decide 
whether two samples of glass came from the same window pane based 
on their chemical compositions.  The resulting analysis will have some 
random error, caused by, for example, imprecision in the instruments 
or variation in the manufacturing process, so a forensic examiner will 
inevitably observe some difference.  How close then is close enough for 
a “match”?  An exacting threshold, requiring a difference extremely 
close to zero, will minimize false positives, but will pay the price in 
false negatives.  A lax threshold will do the opposite.  Thus, given any 
chosen method of analysis, we actually have a whole range of possible 
tests, each corresponding to a different threshold, and accordingly, a 
different false-positive–false-negative (FPFN) tradeoff.  This tradeoff 
is so fundamental that researchers have long assessed diagnostic meth-
ods using receiver-operator characteristic (ROC) curves, which essen-
tially plot false positive rate against false negative rate.8  It is the ROC 
curve that characterizes the method, not a specific false positive or 
false negative rate. 

Classical hypothesis testing, like every other decision rule, makes a 
specific FPFN tradeoff.  Long use and the strong conventions sur-
rounding statistical significance may serve to hide its choices, but they 
operate in the background nevertheless.  Classical hypothesis testing 
preferences the null hypothesis (H0), which typically represents the sta-
tus quo or what one is trying to disprove, over the alternative (H1), 
which typically is what one is trying to prove.  Specifically, it sets a 
maximum false positive rate, conventionally 0.05, and then seeks to 
minimize the false negative rate subject to this condition.9  There are, 
however, no guarantees about the false negative rate: it may be small, 
large, or absurdly large.10  The priority is that the false positive rate is 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
condition studied, and thus are not inherent properties of the test.  Again, our focus here will only 
be on the false positive and false negative rates. 
 8 Conventionally, ROC curves plot the false positive rate on the x-axis and the true positive 
rate (or sensitivity) on the y-axis.  Since the false negative rate )|( CP −  is just one minus the true 
positive rate )|( CP + , the ROC curve contains the same information as a false positive rate vs. 
false negative rate plot. 
 9 Following the earlier footnote, let +  and −  denote a rejection and acceptance, respectively, 
of the null hypothesis.  Further denote the null hypothesis as C  (that is, the absence of a condi-
tion) and the alternative hypothesis as C.  Then classical hypothesis testing ensures that 

α≤+ )|( CP , where α  is often set to 0.05. 
 10 One way in which large false negative rates occur is when a method is too imprecise to be 
practically useful.  Consider this extreme example: Suppose we have a useless instrument that al-
ways returns the same value no matter what we test.  Classical hypothesis testing requires that we 
control the false positive rate — the probability of declaring a positive when a condition is actual-
ly absent, )|( CP + .  But since we have a useless instrument, the only way to guarantee a low false 
positive rate is to never declare a positive at all.  In other words, the rule becomes “always report 
negative.”  But if we always report negatives, then our test will always miss true positives, mean-
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guaranteed to be small, and this setup is useful in certain scientific 
contexts.11 

When a forensic examiner uses classical hypothesis testing to com-
pare glass samples, he therefore implicitly makes a choice between 
false positives and false negatives.  One natural setup parallels the 
“equivalence testing” methods used when generic drugs are tested for 
pharmaceutical equivalence: the null is that the two glass samples are 
different, whereas the alternative is that they are the same, where 
“sameness” is defined as being within some tolerance range.12  Under 
these conditions, classical hypothesis testing ensures some maximum 
false positive rate, and then tries to minimize false negatives.  The 
ASTM standard on glass comparisons also involves classical hypothe-
sis testing, but curiously makes the opposite FPFN tradeoff.13  The 
ASTM standard seems to define the null as “same,” and the alternative 
as “different,” and so it effectively caps the false negative rate (con-
cluding that the glass is different when it is the same), while making 
no guarantees about the false positive rate (concluding that the glass is 
the same when it is different).14  Given the criminal forensic context, 
this ASTM setup is arguably backwards, since most would agree that 
we should worry far more about false positives (that is, false matches) 
than false negatives.15  Regardless, the key point remains that whatev-
er test one uses, one is making a value judgment about the appropriate 
tradeoff between false positives and false negatives. 

Even Bayesian approaches ultimately suffer this fate.  A Bayesian 
approach would eschew rejecting or accepting a null hypothesis, and 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
ing that the false negative rate, )|( CP − , is 100%.  Thus, we have a test in which the false posi-
tive rate is controlled, but which teaches us nothing. 
 11 Notably, this asymmetric setup means that while rejection of the null hypothesis may be 
significant evidence in favor of the alternative, acceptance of the null may be only weak (if any) 
evidence in favor of the null.  E.g., Douglas G. Altman & J. Martin Bland, Statistics Notes: Ab-
sence of Evidence Is Not Evidence of Absence, 311 BRIT. MED. J. 485 (1995). 
 12 See generally R. Clifford Blair & Stephen R. Cole, Two-Sided Equivalence Testing of the 
Difference Between Two Means, 1 J. MOD. APPLIED STAT. METHODS 139, 139 (2002) (describing 
equivalence testing); Giselle B. Limentani et al., Beyond the t-Test: Statistical Equivalence Test-
ing, 77 ANALYTICAL CHEMISTRY 221A, 223A (2005) (same). 
 13 See ASTM INT’L, ASTM E2926-13 STANDARD TEST METHOD FOR FORENSIC COM-

PARISON OF GLASS USING MICRO X-RAY FLUORESCENCE (µ-XRF) SPECTROMETRY 
§§ 10.7.3.1–.2 (2013). 
 14 The ASTM standard seems to use a one-population t-test with a three standard deviation 
cutoff, corresponding to a 0.01, rather than 0.05, probability of error.  See id. § 10.7.3.2.  The one-
population t-test here is technically wrong, because the population means for both specimens need 
to be estimated and thus there are two sources of uncertainty.  Cf. David H. Kaye, Reflections on 
Glass Standards: Statistical Tests and Legal Hypotheses, 27 STATISTICA APPLICATA 173, 175 
(2015) (making a similar point about ASTM E1967-11a, dealing with glass refractive index com-
parisons).  A two-population t-test is therefore arguably preferable, but we will ignore this techni-
cality going forward. 
 15 Cf. Kaye, supra note 14, at 179 (making a similar point about ASTM E1967-11a). 
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instead focus on estimating the difference between the two samples 
and quantifying the associated uncertainty.16  Yet, to render a “match” 
or “non-match” determination, an expert must ultimately apply a 
threshold to that estimate, and that choice of threshold trades off false 
positives and false negatives.17 

THE LIKELIHOOD RATIO 

If experts must invariably make a value judgment as to the im-
portance of false positives versus false negatives, what FPFN tradeoff 
should they choose?  Here, the initial answer is far from clear.  First, 
just because the ultimate burden of proof is beyond a reasonable doubt 
does not mean that evidence must meet that standard to be admissible.  
To be relevant, the evidentiary rules merely require that evidence have 
“any tendency to make a fact more or less probable,”18 because “a 
brick is not a wall.”19  Even the reliability requirements under Daubert 
only need to be established to a preponderance standard under Rule 
104(a).20  Second, even if we wanted to “match” the burden used for 
individual evidentiary elements to the ultimate burden, the relation-
ship between the two is fraught with peril, as seen in other evidentiary 
contexts.21  Finally, courts have long maintained that it is the jury’s 
prerogative to define reasonable doubt.22  So neither a top-down impo-
sition of a particular FPFN tradeoff nor granting unbridled discretion 
to the expert seems to be the proper response. 

Fortunately, there exists an elegant path around this morass.  As it 
turns out, as long as juries receive a key piece of information about a 
forensic conclusion — the likelihood ratio — experts may choose any 
threshold they please.  This likelihood ratio not only provides jurors 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 16 See John K. Kruschke, Bayesian Estimation Supersedes the t-Test, 142 J. EXPERIMENTAL 

PSYCHOL. 573 (2013) (advocating for Bayesian estimation over classical t-tests). 
 17 Again, we assume here that the experts continue to testify to forensic conclusions, rather 
than merely provide the jury with quantitative estimates. 
 18 FED. R. EVID. 401(a). 
 19 FED. R. EVID. 401 advisory committee’s note (quoting CHARLES TILFORD MCCORMICK, 
MCCORMICK ON EVIDENCE § 152, at 317 (Edward W. Cleary ed., 2d ed. 1972)). 
 20 Bourjaily v. United States, 483 U.S. 171, 175 (1987); see also FED. R. EVID. 104(a). 
 21 For example, suppose that one could prove three elements to a probability of 0.6, so that 
each individually satisfied the preponderance standard.  If all three elements are independent, 
however, the probability of their conjunction is 2160606060 .... =×× , which does not satisfy the 
preponderance standard.  This problem is known as the Conjunction Paradox and has spawned 
an extensive literature.  See, e.g., Edward K. Cheng, Reconceptualizing the Burden of Proof, 122 
YALE L.J. 1254, 1263 (2013); Mark Spottswood, Unraveling the Conjunction Paradox, 15 LAW, 
PROBABILITY & RISK 259 (2016). 
 22 For example, courts have firmly eschewed quantification of the beyond a reasonable doubt 
standard.  Peter Tillers & Jonathan Gottfried, Case Comment — United States v. Copeland, 369 
F. Supp. 2d 275 (E.D.N.Y. 2005): A Collateral Attack on the Legal Maxim that Proof Beyond a 
Reasonable Doubt Is Unquantifiable?, 5 LAW, PROBABILITY & RISK 135, 135–37 (2006). 
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with a convenient measure of the probative value of the forensic con-
clusion, but also ensures that the jury — and not the expert — is the 
only actor applying the ultimate burden of proof. 

A likelihood ratio has the following form: 
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where E represents the evidence observed, and H1 and H0 are the 
competing hypotheses.  In the forensic testing context, E is the out-
come of the forensic test — namely a declared “match” or “non-
match.”  H1 is the prosecution’s story, which is that the defendant is 
guilty, or perhaps more modestly the fact that glass found on the  
defendant is the same glass from the crime scene.  H0 is the defense’s 
position. 

Scholars have long argued that the likelihood ratio is the mathe-
matical representation of relevance.23  Conceptually, evidence makes 
material facts more or less probable because the probability of seeing 
such evidence is more likely under one side’s story than the other’s.  If 
the evidence is just as likely to surface under the prosecution’s story as 
the defendant’s story, it does not help us distinguish between the two.  
The likelihood ratio also features prominently in Bayes’ Rule.  For 
Bayesians, it is how one updates one’s prior probability ratio, the per-
suasive balance between the two hypotheses before seeing the evi-
dence, to obtain the posterior probability ratio, the persuasive balance 
after seeing the evidence.  To wit, 
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More importantly for our purposes, the likelihood ratio is not just 
related to the FPFN tradeoff, but in fact serves as its mathematical 
equivalent.  Indeed, one scholar has suggested that ROC curves be 
transformed into plots of the positive likelihood ratio (the evidentiary 
worth of a “match”) versus the negative likelihood ratio (the eviden-
tiary worth of a “non-match”).24  This equivalence can be understood 
intuitively with a simple example: Stringent tests minimize false posi-
tives at the expense of false negatives.  The probative value of a posi-
tive (“match”) from a stringent test is therefore relatively high, because 
we can be confident that a declared “match” is the real thing.  By con-
trast the probative value of a negative (“non-match”) is relatively low-
er, since there are more false negatives muddling the waters.  The rela-
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 23 See, e.g., David H. Kaye, Comment, Quantifying Probative Value, 66 B.U. L. REV. 761, 762 
(1986); Richard O. Lempert, Modeling Relevance, 75 MICH. L. REV. 1021, 1022–32 (1977). 
 24 Nils P. Johnson, Advantages to Transforming the Receiver Operating Characteristic (ROC) 
Curve to Likelihood Ratio Co-Ordinates, 23 STAT. MED. 2257, 2258 (2004). 



  

160 HARVARD LAW REVIEW FORUM [Vol. 130:154 

tionship between false positive and false negative rate parallels the re-
lationship between the positive likelihood ratio and the negative likeli-
hood ratio.25 

This relationship between the FPFN tradeoff and the likelihood ra-
tio is extremely good news.  No matter what tradeoff a forensic exam-
iner makes between false positives and false negatives, that choice will 
be reflected in the probative value accorded the forensic conclusion.  If 
the examiner chooses a stringent standard and gets a “match,” then the 
jury can weigh that “match” heavily.  If the examiner chooses a lax 
standard and gets a “match,” then the jury can weigh it more skepti-
cally.  In either case, the jury can give the forensic evidence proper 
weight and then apply the burden of proof independently and without 
interference from the expert.26  Thus, as long as forensic results are ac-
companied by their likelihood ratios, we avoid the need to match the 
forensic standard with the burden of proof. 

CONCLUSION AND SOME PRACTICAL ISSUES 

This Commentary has shown that any conclusion of “match” or 
“non-match” implicitly requires a judgment about the proper tradeoff 
between false positives and false negatives.  Determining what tradeoff 
best coheres with the beyond a reasonable doubt standard (or any ul-
timate legal burden), however, is complicated and controversial.  For-
tunately, one can avoid this problem by presenting the likelihood ratio 
associated with the forensic conclusion to the factfinder.  The likeli-
hood ratio not only provides a mathematical representation of the re-
sult’s probative value, but also naturally incorporates the choice of 
FPFN tradeoff made by the forensic examiner into the probative val-
ue.  As long as the likelihood ratio is given, a forensic examiner can 
apply whatever FPFN tradeoff the examiner chooses. 

Although in theory likelihood ratios solve the problem of “match-
ing” a forensic examiner’s FPFN tradeoff with the burden of proof, 
there remain several important practical issues.  First, the solution pre-

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 25 In mathematical terms, the two pairs are transformations of each other.  Recall that =FPR  
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See also id. at 2258–59 (making a similar derivation). 
 26 Under a Bayesian framework, each piece of information updates the prior probability ratio  
( )()( 01 HPHP ) until the jury has a final posterior probability ratio ( )|()|( 01 EHPEHP ).  The 
jury then decides how high a ratio is necessary in order for the prosecution to win under the rea-
sonable doubt standard. 
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supposes that such likelihood ratios exist.  Many forensic fields still 
lack the population data on their techniques that would be needed to 
calibrate the likelihood ratios.  Some, such as toolmarks or handwrit-
ing, are subjective, making even the collection of such empirical data 
difficult.  A likelihood ratio–based solution will require the use of more 
objective forensic techniques and the collection of such data.  Second, 
whether courts would mandate the presentation of likelihood ratios 
remains an open question.  Scholars have long argued in favor of pres-
enting forensic results using likelihood ratios,27 and indeed some foren-
sic communities in Europe have embraced them,28 but by and large in 
the United States, forensic results are still presented as bald conclu-
sions.  Finally, the solution requires that juries or other legal actors 
comprehend and properly use likelihood ratios.  An increasingly com-
plex literature has emerged on lay understanding of likelihood ratios 
and how such quantitative information is best presented.29  Research 
thus far has yielded no easy answers, with Professor William C. 
Thompson and Eryn J. Newman recently concluding that the best 
presentation method may depend on context and the specific forensic 
discipline,30 and even then, the definition of “best” is debatable.31 

Conceding these practical issues, however, the more critical point is 
how likelihood ratios can provide jurors sufficient information to wres-
tle back control of the proof process from experts.  The upshot is that 
a forensic examiner’s choice of threshold does not necessarily distort 
the burden of proof.  Does the legal system need continued research to 
determine the best ways to present likelihood ratios?  Do we need to 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 27 DAVID H. KAYE ET AL., THE NEW WIGMORE ON EVIDENCE: EXPERT EVIDENCE, at 
chs. 13–14 (2016); COMMUNICATING THE RESULTS OF FORENSIC SCIENCE EXAMINATIONS: 
FINAL TECHNICAL REPORT FOR NIST AWARD 70NANB12H014, at 2 (Cedric Neumann,  
Anjali Ranadive & David H. Kaye eds., 2015). 
 28 Colin Aitken et al., Guest Editorial, Expressing Evaluative Opinions: A Position Statement, 
51 SCI. & JUST. 1, 1–2 (2011). 
 29 See William C. Thompson & Eryn J. Newman, Lay Understanding of Forensic Statistics: 
Evaluation of Random Match Probabilities, Likelihood Ratios, and Verbal Equivalents, 39 LAW & 

HUM. BEHAV. 332 (2015); see also K.A. Martire et al., On the Interpretation of Likleihood Ratios 
in Forensic Science Evidence: Presentation Formats and the Weak Evidence Effect, 240 FOREN-

SIC SCI. INT’L 61 (2014); Kristy A. Martire et al., The Expression and Interpretation of Uncertain 
Forensic Science Evidence: Verbal Equivalence, Evidence Strength, and the Weak Evidence Ef-
fect, 37 LAW & HUM. BEHAV. 197 (2013).  See generally Jonathan J. Koehler, On Conveying the 
Probative Value of DNA Evidence: Frequencies, Likelihood Ratios, and Error Rates, 67 U. COLO. 
L. REV. 859 (1996) (discussing the problems of presentation of DNA statistics). 
 30 Thompson & Newman, supra note 29, at 339. 
 31 Studies show that juries will give different weight to different presentations of the same 
mathematically equivalent material.  Jury sensitivity to the strength of statistical evidence also 
varies by presentation method.  See sources cited supra note 29.  But we ultimately have an  
Archimedean point problem here, because we do not know which juror reaction is correct.  Some 
researchers have used Bayesian reasoning as the goal, but even then, the presence of different pri-
ors and other factors makes assessment of mock juror behavior on an absolute scale difficult. 
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develop methods to teach jurors how to use statistical information?  
The answer to these questions is clearly yes.  But teaching and helping 
jurors are projects with which the legal system is familiar.  The key is 
that likelihood ratios present a clear path to improving the use of fo-
rensics testimony in court. 


